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Abstract. A weight conservation condition for the S-matrix of the braid group representa- 
tion, from which non-vanishing elements of the S-matrix can be determined, is introduced. 
A method of weight lattice analysis of representations of Lie algebra is suggested and used 
to give structures of braid group representations in various cases. This makes it feasible 
forbraid group representations to be obtained by solving the spectral parameter independent 
Yaw-Barter equation directly, which leads to several new braid p u p  representations. 

1. Iutroduction 

It is known that the Yang-Baxter equation (YBE) plays a crucial role in the study of 
exactly sovable models in two-dimensional statistical mechanics, quantum integrable 
systems and conformal field theory [l-61. Recently there has been a great deal of 
interest in the study of braid group representations ( B G R ~ )  [7-101 in connection with 
the YBE. The basic relations for the components of the representation tensor of a braid 
group are the spectral parameter independent cases of the YBE (strictly speaking, those 
having a label permutation). 

The aim of this paper is to present in detail an interesting approach to construction 
of B G R ~ .  In this approach we introduce a weight conservation condition for the S-matrix 
of the BGR, from which the non-vanishing elements of the S-matrix can be determined. 
With the help of 'weight lattice' analysis of representations of Lie algebra, the structure 
of B G R ~  can be obtained without much difficulty. It is then not very difficult to determine 
these non-vanishing elements explicitly by solving parameter independent YBES (in the 
following simply called YBES). In particular, in terms of the extended Kauffman diagram 
technique, solving Y B E ~  becomes quite simple in most cases. Therefore it is feasible to 
find B G R ~  satisfying the weight conservation condition by solving YBEE directly. In the 
next section we briefly review the Witten approach for deriving skein relations of link 
polynomials [lo, 111 and give a reasonable definition of the polynomial of a single 
loop in terms of weight vectors of the irreducible representation of Lie algebra. In 
section 3 we discuss properties of Markov moves and their constraints on the S-matrix 
of B G R ~ .  This leads to the introduction of 'weight conservation' condition, which is 

11 Present address: Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027. People's 
Republic of China. 

0)05.4470/91/153443+11$03.50 0 1991 IOP Publishing Ltd 3443 



3444 You-Quon Li et ol 

more general than Akutsu Wadati's charge conservation condition. Considering the 
property of a third type of 'move', we introduce transposition symmetry for the S-matrix. 
Section 4 is concerned with applications of the weight conservation condition. Finally, 
we give some remarks in section 5. 

2. Definition of the polynomial for a single loop 

In our previous paper we discussed the universality of the Witten approach to link 
polynomials [12]. Here we only give the main results. 

In the Witten approach [ 111, link polynomials are considered as partition functions 
of Wilson lines. Skein relation of link polynomials can be easily obtained by calculating 
the related Casimir invariants. Consider the case associated with an irreducible rep- 
resentation R of a given Lie algebra. If the direct product of R decomposes to r distinct 
irreducible representations of the same Lie algebra, 

where B is the half monodromy operator [6] and A, are eigenvalues of B given by 

A ,  = *exp(i7i(2AR -AE,)) (3) 

where the sign + or - corresponds to whether E, appears symmetrically or antisymmetri- 
cally in R O R ;  An or PE, is the conformal weight of the primary field transforming 
as R or E,. This is given in  [13] from the Wess-Zumino chiral model: 

c, AE, =- cn AR =- 
C,+ k C, + k (4) 

where CR or C ,  is the Casimir invariant of the irreducible representation R or E,, 
and C, is that of the adjoint representation of the same Lie algebra. Taking the natural 
pair of x with equation (2) and taking into account the framing factor 

we will obtain an rth-order skein relation of expectation values of Wilson lines, i.e. 
an rth-order skein relation of link polynomials. 

Forthe case ofthe fundamental representation of A,,, the skein relation is a quadratic 
skein relation 

q-'"+"P+, + ( q  -q-l)P,-q"+'P_, =o. ( 6 )  
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For the cases of fundamental representations of B., C. and D., the skein relations 
are respectively equations (7), (8) and (9): 

4 -""p + 2  -q- '"+ '+ l )P+,  - ( q z n + l  -q2"-I+ 1)Po+q4"P_, = 0 

4 -4n+2p t 2  - ( 4 - 2 m  -q -z "+2+  ~ ) p + ~  - ( 4 2 n  -q2 " -2+  l )po+ q4"-2p_, =0, 

(7) 

q-2"-1)P+,+(q2"+2-q2"-l)Po-q4"+2P_,=0 (8) 

(9) 

Equations (7)-(9) are cubic skein relations. For the fundamental representation of 
G, one can obtain a quartic skein relation; similarly, further higher-order skein relations 
can be obtained from various non-fundamental irreducible representations of Lie 
algebra. 

The polynomial of a single loop can be determined from a quadratic skein relation. 
Using the property P [ o o ] = P [ o ] P [ o ] ,  we obtained the polynomial of a single loop 
for the case of the fundamental representation of A, from equation (6): 

-4" -2p+ , - (q -2n-2 -  
4 

b , - . . .  x... b;'+. ... x... 

(10) P [ o ] =  4'+'- -"-I  = q n + q n - 2 + .  . . + q - n + z + q - * ,  
4 - 4-1 

(14) 

In order to associate with the fundamental representation of A,,, we write equation 
(10) in terms of its weight vectors as follows: 

P[o]  = qb"." ( 1 1 )  
A. 

where A. are weight vectors labelling the fundamental representation of A, and p is 
half the sum of all positive roots of A,. 

However, the polynomial of a single loop cannot be determined from cubic or 
higher-order skein relations without further information. This requires the definition 
of the polynomial of a single loop for cases beyond the fundamental representation 
of A.. A very natural definition arises from applying formula ( 1 1 )  to other cases. 

. .  
isomorphism 

g: an + End( i0 V )  
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given by 

g j : = g ( b , ) = 1 " ' ~ 1 i 2 ' 0 ,  .,~I"-1'~S~l"t2'~...~I'"' (16) 

where I"' is an N x N unit matrix at the j t h  position and S is in an N 2  x N 2  matrix. 
In terms of definition (16), the defining relations (12) hold automatically and equation 
(13) becomes the following explicit relation for the elements of the S-matrix: 

(17)  

This is just the spectral parameter independent YBE. According to Kauffman's notation 

S a b S h c S x k  = ~ b ~ s a k s h 8  
gh kf de kg dh e/. 

d 

[14] >( stands for Sz i  and for (S-')::, and equation (17) is expressed 
d / 

conveniently as 

Now we consider the case that Vis a carry space of some irreducible representation 
of any Lie algebra. It is known that the canonical basis of V is labelled by weight 
vectors of the representation under consideration. Let us denote the collection of all 
weight vectors by WA, and called a weight lattice. In the following discussion, A often 
stands for the highest weight vector and D" denotes the representation characterized 
by A. 

We desire such a BGR that the closed braid can give topological invariants of links. 
In order to ensure agreement with the polynomial of a single loop defined in the last 
section (refer to [8] and [7]), we define the Markov trace by 

@(A) =tr(Hg(A)) 
n 

H = n O h  (19) 

where A E  Bn, the symbol 'tr' stands for the standard trace of a matrix and 

h=(hg)  

h; = q4".'PSy b .  

The property of the Markov move I @(AIAI) =Q(A2A,) requires that 

tr(Hg(A,)g(Ad) = t r (Hg(AMA,) ) .  

It is sufficiently guaranteed if 

[H, gil = O .  

(4  4 

By using equations (16) and (20), equation (22) is written as 
4 i A a + A h l . p  - ( 4 A , + A d l . ~ ) ~ ; ;  = 0, 

This gives the weight conservation condition 

Aa +A, = A, + Ad 
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i.e. the elements of S =  (S:,b) must vanish unless condition (24) is satisfied. Strictly 
speaking, equation (24) is only a sufficient condition for the first factor in equation 
(23) being zero. However, the choice of equation (20) is not unique and, in fact, p 
can be replaced by the sum of p and some root vectors. Independent of choice, the 
condition (24) is necessarily required. 

The property of the Markov move I1 is the following constraints on the diagonal 
elements of the S-matrix: 

s:;q4"* .P independent of a (25) 
h 

if the non-vanishing elements S$ also satisfy a +  b = c+ d. 
The formula of the link polynomial takes the same form as that in [7]: 

We define a star operator by 

*bi = bi 

satisfying the property 

and define a 'prime' operator by 

satisfying the property 

( A , A 2 ) ' = A ; A ;  V A , , A , E B , ,  

We notice that the closed braid of A, A', * A  and *A' are isotopic to each other, so 
they must give the same polynomial. Since A ' =  T-'AT, where T is an element of 93" 
indicated by 

n - l  n - i  

which corresponds to 

then @(A')  = @( T ' A T )  = @ ( A )  is satisfied identically. Now @ ( A )  = @ ( * A )  requires 
that 

s:: = si$. (32) 

This is easy to check by means of the Kauffman diagram notation. Therefore, the 
S-matrix is assumed to have transposition symmetry as well as a weight conservation 
condition. 
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4. Applications 

For a given irreducible representation D" of a Lie algebra, we have the corresponding 
weight lattice W" = (Aala E I c Z). The weight lattice of the direct product representa- 
tion D " 0 D "  is the superposition of W", i.e. (Aa+AhlVAn,  A h €  W"}. 

In general, D " 0 D "  is not irreducible, and many weight vectors of it may be 
degenerate. It means that several weight vectors coincide at one point. 

From the configurature of the weight lattice of D " 0 D "  we can determine the 
structure of the corresponding S-matrix of the BGR under the weight conservation 
condition: any m-fold degenerated weight vectors give an m x m non-zero submatrix. 
These submatrices contribute non-zero elements to the whole S-matrix. In the following, 
we apply this approach to some concrete cases. 

4.1. A, 

We know that the weight lattice of DL'/21 has two weights (left diagram). The weight 
lattice of D[1/210D['/21 is obtained as the superposition of W['/" (right diagram): 

-1 0 1 -1 0 1 
1 . 1  I 

A-, A, A-i+A-i A - , i A ,  Aj+Ai  
AI + A-, 

where a single dot stands for a single weight vector and one dot surrounded by one 
(or m - 1) circle stands for two (or m) weight vectors coinciding at the same point. 
From the right diagram, we have the following structure of the S-matrix: 

1 1  * 

( S 3 =  -1 l - l  1 [ 1 ; .] 
-1 -1  

(33 )  

1 1  1 - 1  - 1 1  - 1 - 1  

where the marked positions can be non-zero; the remaining positions must be zero 
due to the weight conservation condition. 

Similarly, for the cases of higher-dimensional representations D[" (j  is half of an 
integer) we have 

( S $ )  = blockdiag(u,u,. . . u , ~ + ~  . . . u p 1 )  (34) 

where u m ( m  = 1 , 2 , .  . , , 2 j + l )  is an m x m matrix without vanishing elements. 

4.2. Fundamental representation of rank-two Lie algebra 

For the rank-two Lie algebra (A2 ,  B2, C, ,  D, and G2) the weight lattice can be drawn 
on a plane, so the weight lattice of D " 0 D "  can be obtained easily, i.e. setting the 
origin of W" at each weight lattice point of W' and drawing the lattice W' once we 
obtain the weight lattice of D"0D" .  Then the structure of the S-matrix relating to 
the fundamental representation of A2, B 2 ,  C , ,  D2 and G, can be determined without 
much difficulty. The results have been given in a previous paper [lo] (for more detail, 
see [15]). For brevity, we omit it here. 
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4.3. A., B,, C, and D. (fundamental representation) 

The weight lattice of DAB D" can be obtained from that of D" pictorially for rank-two 
(even some rank-three) Lie algebras. However, for higher-rank Lie algebras, it is 
impossible to do this pictorially. This can be overcome by introducing the following 
symbolism: 

where the integer d. is the degeneracy number of weight vector A,. With the symbolic 
form (35), we have a one-to-one correspondence between the symbolic polynomial 
(35) and weight lattice configuration in weight space. Therefore the superposition of 
weight lattice can be realized via the standard multiplication rules (distributive rules). 

The weight lattice of the fundamental representation of A. is a collection of n + 1 
vectors, 

W [ ' . o . - . . 0 1 = [ A . l a = n , n - 2  ,..., - n + Z , - n }  (36) 

satisfying A. + A b  #A.,,+& unless a = a ' ,  b = b' for a < b, a'< b'. We observe that 

This demonstrates that there are two sorts of weight vectors in the weight lattice of 

S-matrix are the following Kauffman 'state' diagrams: 
D['.o I I@D[1.0 ,... I .  . single-fold . and two-fold. The non-vanishing contributions to the 

( & + A a ) - +  

b b 

X H  
We can now write the S-matrix which satisfies the weight conservation condition 

in terms of a Kauffman diagram: 

h where u., pttb, w . + ~  and w L ~ , ~  are coefficients to be determined by the YBE, and 
p :  = p f - h  due to transposition symmetry of the S-matrix. 

Now we consider the case of the fundamental representation of B.. The weight 
lattice is a collection of 2 n  + 1 vectors 

W"~o..-01=[A1b=2n,2n-2,.  _ _  - 2 n t 2 ,  -2n)  (40) 

satisfyingA.+Ab#A,.+Ab.unlessa=a',  b = b ' o r a + b = a ' + b ' = O f o r a < b , a ' < b ' .  
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In this case we have 

- - e- (”h+ . ’ ”+  Z 2 e - ( ” ~ + ” J + ( 2 n  + 1) e-” (41) 
b t 0  h c c  

b + c i O  

where A.+A_. = O  have been used. The first term in equation (41) shows single-fold 
weight vectors, the second term shows two-fold weight vectors and the third term 
shows one ( 2 n  + 1 )-fold weight vectors. The non-vanishing contributions to the S-matrix 
are easily obtained: 

c + b f 0  c , b  Xk-4 

2n, -2n . . .  0,o ... - 2 4  2n. 

In the above ( 2 n  + 1) x ( 2 n  + 1) square array, every non-diagonal and non-skew 
diagonal position has the contribution of such ‘states’ as 

1 a * b # O  

-b b 

(43) 
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Then the S-matrix is written as 

where q: = 0 unless a * b # 0;  p :  = p : - b  and q: = qI: due to transposition symmetry 
of the S-matrix. 

The cases of the fundamental representations of C,, and D. are discussed similarly. 
The results are the same as equation (44) except that the sets of labels for C, and 0, 
are 

(45) I={2n-l ,Zn-3 ,... 1,-1, _ _ _ ,  -2n+3,-2n+l).  

4.4. The case that the set of labels has vacancies 

We knew in section 2 that the weight conservation condition guaranteed Markov move 
I and that the label conservation guaranteed Markov move I1 simply to be equation 
(25). In previous cases, the sets of labels which label the elements of the S-matrix 
have equal intervals and, fortunately, the non-vanishing elements of the S-matrix under 
weight conservation satisfy label conservation. But this is not always true, especially 
in the cases of higher-level representations. Because the label conservation condition 
contains less constraints than the weight conservation condition, we can always 
rechoose labels so that the non-vanishing elements of the S-matrix under weight 
conservation also satisfy label conservation. In  general, the set of labels no longer has 
equal intervals. It is evident that the labels of weight vectors should be chosen in such 
a way that the intervals of labels of weight vectors in the same direction of any simple 
root are the same and those in different directions of various simple roots may be 
different. 

The simplest non-trivial one among symmetric tensor representations of A. is the 
six-dimensional representation of A,. The set of labels having the least vacancies is 

l={3,1,0,-l,-Z,-3) (46) 

which is chosen in such a way that the intervals of labels of weight vectors along the 
direction of aI is the twice of that along a2. The a's are simple roots. The structure 
of the S-matrix is 

The details of the submatrices have been given in a previous paper [lo]. 
Among antisymmetric tensor representations of A,, the simplest non-trivial one is 

the 10-dimensional representation of A, (because that of A, is just the conjugate 
representation of the fundamental representation of A,; that of A, is isomorphic to 
the fundamental representation of 4). After some simple calculations we find that 
when the intervals of labels of weight vectors along the directions of a,, a,, a, and 
&are 3, 1,2 and 2 respectively, the set of labels has the least vacancies and takes 

l={11,9,5,3,1,-1,-3,-5,-7,-11}. (48) 

If this set is adopted, the S-matrix has a block diagonal structure with 22 submatrices. 
The non-vanishing elements of these submatrices can be determined by the weight 
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conservation condition. The details of these submatrices and the final result of the HCR 

were given in [I61 by two of the authors (Ge,Xue) with others, 

5. Remarks 

The weight conservation condition we propose is a constraint on the S-matrix by 
Markov move I, but the YBE is in fact the constraint by the defining relations of the 
Braid group. One may wonder if those two constraints are always compatible. It is 
worth noting that the compatibility between those two constraints is not accidental. 
The defining relations of the braid group can be derived from a Markov trace and the 
star ‘prime’ operation as a simple sufficient relation. Therefore, it is reliable to take 
the elements of the S-matrix which do  not satisfy the weight conservation condition 
as zero before solving the YBE. 

For the cases of fundamental representations of A,, B., C,, D. and G,, and of a 
few non-fundamental ones, the set of labels with equal intervals can guarantee the 
non-vanishing elements of the S-matrix to also satisfy the label conservation condition. 
So the structure of the BCR (S-matrix) is the following block diagonal form: 

S = block diag(u, U,. , . uN.. . u2u,) (49). 

where the i x i submatrix uj( i = 1,2, . . . , N )  has further vanishing elements. While fur’ 
the cases of most non-fundamental representations, the set of labels no longer has 
equal intervals. So the block structure is different from equation (49), which depends 
on a concrete configuration of the set of labels. 

It is worthwhile mentioning that the BGR obtained in our approach has transposition 
symmetry (see equation (23)), and thus it can be diagonalized through a similar 
transformation by an orthogonal matrix. This is essential to recent Yang-Baxter-ization 
approaches [171. 
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